Running head: SUCCESSOR REPRESENTATION and TEMPORAL CONTEXT The Successor Representation and Temporal Context
نویسندگان
چکیده
The successor representation was introduced into reinforcement learning by Dayan (1993) as a means of facilitating generalization between states with similar successors. Although reinforcement learning in general has been used extensively as a model of psychological and neural processes, the psychological validity of the successor representation has yet to be explored. An interesting possibility is that the successor representation can be used not only for reinforcement learning, but for episodic learning as well. Our main contribution is to show that a variant of the Temporal Context Model (TCM; Howard and Kahana, 2002), an influential model of episodic memory, can be understood as directly estimating the successor representation using the temporal difference learning algorithm (Sutton and Barto, 1998). This insight leads to a generalization of TCM and new experimental predictions. In addition to casting a new normative light on TCM, this equivalence suggests a previously unexplored point of contact between different learning systems.
منابع مشابه
The Successor Representation and Temporal Context
The successor representation was introduced into reinforcement learning by Dayan ( 1993 ) as a means of facilitating generalization between states with similar successors. Although reinforcement learning in general has been used extensively as a model of psychological and neural processes, the psychological validity of the successor representation has yet to be explored. An interesting possibil...
متن کاملAdvantages and Limitations of using Successor Features for Transfer in Reinforcement Learning
One question central to Reinforcement Learning is how to learn a feature representation that supports algorithm scaling and re-use of learned information from different tasks. Successor Features approach this problem by learning a feature representation that satisfies a temporal constraint. We present an implementation of an approach that decouples the feature representation from the reward fun...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملContext in temporal sequence processing: a self-organizing approach and its application to robotics
A self-organizing neural net for learning and recall of complex temporal sequences is developed and applied to robot trajectory planning. We consider trajectories with both repeated and shared states. Both cases give rise to ambiguities during reproduction of stored trajectories which are resolved via temporal context information. Feedforward weights encode spatial features of the input traject...
متن کاملImproving Generalisation for Temporal Difference Learning: The Successor Representation
Estimation of returns over time, the focus of temporal difference (TD) algorithms, imposes particular constraints on good function approximators or representations. Appropriate generalisation between states is determined by how similar their successors are, and representations should follow suit. This paper shows howTDmachinery can be used to learn such representations, and illustrates, using a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011